
DISPERSION RELATION FOR PERTURBED FLUID

1. Notation

The n-dimensional Euclidean space is denoted by En, for emphasis. The set of
real numbers is denoted by R, and the set of complex numbers is denoted by C.
The set of square matrices of order n, with values in the field F , is denoted by
Mn(F ). The transpose of a matrix A is denoted by AT.

The Einstein summation convention is used throughout, and indices from the
beginning (resp. the middle) of the latin alphabet take values from the set {1, 2}
(resp. the set {1, 2, 3}).

In differentation we use Euler’s notation, with Dif(a) := (∂f/∂xi)(a).

2. Analysis

The aim of this analysis is to obtain the dispersion relation for perturbed Newto-
nian fluid in a rotating frame of reference.

Studies in planetary ring dynamics are generally carried out in cylindrical coordi-
nates, as is clearly appropriate, considering the symmetries present in planetary rings.
In studies of moonlet wakes, however, curvature terms are usually neglected in order
to simplify calculations. For notational convenience, therefore, we adopt Cartesian
coordinates throughout our analysis. Due to other approximations made along the
way, one may safely identify Cartesian coordinates with cylindrical coordinates via
the small-angle approximation.

2.1. The Continuity Equation. Let x = (x1, x2, x3) ∈ E3 denote the position
and let ρ, ui : E3 ×R → R denote the mass density field and the components of
the velocity vector, respectively. The functions ρ and ui depend on the position x
and time t, and we assume they are both smooth.

The continuity equation,

(1) Dtρ+Di(ρui) = 0,

implies that

(2) 0 =

∫
R

Dtρ+Di(ρui) dx3 = Dtσ +Da(σva),

assuming that ρ→ 0 as x3 → ±∞. Here we have defined the surface density,

(3) σ :=

∫
R

ρ dx3,

and the density-weighted average velocity,

(4) va :=
1

σ

∫
R

ρua dx3.

Note that σ, va : E2 ×R→ R.
Now consider eq. (2) as a perturbation problem, i.e., assume that σ =

∑∞
n=0 ε

nσn
and va =

∑∞
n=0 ε

nva,n, where ε is the perturbation parameter. We assume the
unperturbed problem (obtained by setting ε equal to zero) has a solution described
by σ0 and va,0. Then

(5) Dtσ0 + εDtσ1 +Da[σ0va,0 + ε(σ0va,1 + σ1va,0)] = O(ε2)
1
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and the first-order problem (obtained by setting the coefficient of ε equal to zero) is

(6) Dtσ1 +Da(σ0va,1 + σ1va,0) = 0.

We let the perturbed fields describe unifrequent plane waves, i.e., make the ansatz

(7) (σ1, va,1) = (σ̃1, ṽa,1)ei(kaxa−ωt),

where σ̃1, ṽa,1 ∈ C denote wave amplitudes, ka ∈ C are the wave vector components,
and ω ∈ R is the frequency. Allowing the wave vector components ka to be complex
leads to dissipation. Note that physical fields are described by the real parts of the
fields. Consequently eq. (6) reduces to

(8) ωσ1 + va,1(iDaσ0 − kaσ0) + σ1(iDava,0 − kava,0) = 0.

We now fix the value of σ0 so that we may consider it as constant in the vicinity
of the corresponding point in E2; accordingly its spatial derivatives vanish. We
also assume the initial fluid velocity is parallel to the x2-axis, i.e., let v1,0 = 0. In
addition, we assume variations of the initial fluid velocity v2,0 in the x2-direction
are negligible so that D2v2,0 = 0. Then eq. (8) reduces to

(9) (ω − k2v2,0)σ1 − σ0kava,1 = 0.

2.2. The Navier-Stokes Equation. Let φ, p : E3 × R → R denote the gravi-
tational potential and the pressure, respectively, and assume these functions are
smooth. The Navier-Stokes equation, written in a rotating frame of reference, is

(10) Dtui + ujDjui = −Diφ−
1

ρ
Dip−

1

ρ
Djτij − 2Ωikuk − ΩikΩkmxm,

where Ωij := −εijkΩk; here Ωi denote the angular velocity vector components. The
two last terms of eq. (10) are the Coriolis and centrifugal forces, respectively, which
appear due to the rotating frame of reference. The components of the viscous stress
tensor τ are, for Newtonian fluid,

(11) τij = −2µD(iuj) + (2µ/3− ζ)δijDkuk.

Here µ and ζ are the coefficients of shear and bulk viscosity, respectively, and we
allow them to depend on the mass density ρ. Moreover, we assume ζ ∝ µ, so that
we may write 2µ/3− ζ = αµ, with α ∈ R. Note that τ is symmetric. We let the
reference frame rotate about the x3-axis, in which case Ωikuk = ‖Ω‖εi3kuk and
ΩikΩkmxm = −Ω2δiaxa. We assume the angular velocity ‖Ω‖ is constant. With
these assumptions eq. (10) reads

(12) Dtui + ujDjui = −Diφ−
1

ρ
Dip−

1

ρ
Djτij − 2‖Ω‖εi3kuk + Ω2δiaxa

with

(13) τij = −2µD(iuj) + δijαµDkuk.

We wish to proceed in a manner similar to the one used in section 2.1, but, in
order to make any progress, we need to make further assumptions.1 We begin by

Remark 1 (Thin-disk approximation). Let ρ = %δ0, where % is a smooth function
and δ0 is the Dirac measure at x3 = 0. Then∫

R

ρ(x, t) dx3 =

∫
R

(%δ0)(x, t) dx3 = %(x1, x2, 0, t)

1One might be tempted to dodge the integrals like we did in section 2.1, but, to be able to
couple the continuity equation and the Navier-Stokes equation, one’s definitions must be consistent.
However, e.g., Dtva and the density-weighted average of Dtua are not equal, as a short calculation
shows (for any smooth ρ, that is).
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and ∫
R

(ρf)(x, t) dx3 =

∫
R

(%δ0f)(x, t) dx3 = (%f)(x1, x2, 0, t)

by definition. It follows from eq. (3) that, for a thin disk, σ(x1, x2, t) = %(x1, x2, 0, t)
and F (x1, x2, t) = f(x1, x2, 0, t), where F is the density-weighted average of a
function f . Thus, e.g., va(x1, x2, t) = ua(x1, x2, 0, t).

We similarly let p = p′δ0 and µ = µ′δ0, and assume that u3(x1, x2, 0, t) = 0. We
moreover assume both φ and ui are symmetric with respect to the x3 = 0 plane, so
that D3φ(x1, x2, 0, t) = D3ui(x1, x2, 0, t) = 0. Then eq. (12) reduces to

(14) Dtva + vbDbva = −DaΦ− 1

σ
DaP −

1

σ
DbTab − 2‖Ω‖εa3bvb + Ω2xa

with

(15) Tab = −2ηD(avb) + δabαηDcvc.

Here Φ is the density-weighted average of φ, the pressure is P :=
∫
R
p dx3 and

the coefficient of shear viscosity is η :=
∫
R
µdx3. Before going further we let

Φ = Φp + Φd, where the subscripts p and d refer to planet and disk, respectively.
Now consider eq. (14) as a perturbation problem in σ, va, Φd, η and P . Then

O(ε2) = Dtva,0 + εDtva,1 + vb,0Dbva,0 + ε(vb,1Dbva,0 + vb,0Dbva,1)

+Da(Φp + Φd,0) + εDaΦd,1 +
1

σ0
(1− εσ1/σ0)DaP0

+
ε

σ0
DaP1 +

1

σ0
(εσ1/σ0 − 1)Db(2η0D(avb),0 − δabαη0Dcvc,0)

− ε

σ0
Db[2η1D(avb),0 + 2η0D(avb),1 − δabα(η1Dcvc,0 + η0Dcvc,1)]

+ 2‖Ω‖εa3b(vb,0 + εvb,1)− Ω2xa

(16)

and the first order problem is

0 = Dtva,1 + vb,1Dbva,0 + vb,0Dbva,1 +DaΦd,1 + 2‖Ω‖εa3bvb,1

+
1

σ0

[
DaP1 − (σ1/σ0)DaP0

]
+
σ1
σ2
0

Db(2η0D(avb),0 − δabαη0Dcvc,0)

− 1

σ0
Db[2η1D(avb),0 + 2η0D(avb),1 − δabα(η1Dcvc,0 + η0Dcvc,1)].

(17)

We fix the values of σ0, η0 and P0 so that we may consider them as constant in
the vicinity of the corresponding point in E2; accordingly their spatial derivatives
vanish. We moreover let v1,0 = 0 and D2v2,0 = 0, as in section 2.1. With these
assumptions eq. (17) simplifies to

0 = Dtva,1 + δa2v1,1D1v2,0 + v2,0D2va,1 +DaΦd,1 +
1

σ0
DaP1

+
σ1
σ2
0

δa2η0D
2
1v2,0 −

1

σ0

[
D1v2,0(δa1D2 + δa2D1)η1 + δa2η1D

2
1v2,0

]
− η0
σ0
Db(2D(avb),1 − δabαDcvc,1) + 2‖Ω‖εa3bvb,1.

(18)

We let the perturbed fields describe unifrequent plane waves, as in section 2.1 [see
eq. (7)]. We moreover let Φd,1 = −2πGσ1/‖k‖, P1 = P ′σ1 and η1 = η′σ1, where
P ′ = (DσP )0 and η′ = (Dση)0. Here the subscript 0 refers to the unperturbed
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value. Then eq. (18) reduces to

0 = (ω − k2v2,0)va,1 + iδa2v1,1D1v2,0 + γkaσ1 + i
σ1
σ2
0

δa2η0D
2
1v2,0

+
σ1
σ0
η′
[
(δa1k2 + δa2k1)D1v2,0 − iδa2D

2
1v2,0

]
+ 2i‖Ω‖εa3bvb,1

+ i
η0
σ0
kb(kavb,1 + kbva,1 − δabαkcvc,1),

(19)

where γ = 2πG/‖k‖ − P ′/σ0.

2.3. The Dispersion Relation. Combining eq. (9) and eq. (19) leads to the
homogeneous matrix equation

(20) A(σ1, v1,1, v2,1)T = 0,

where A ∈M3(C) and

A11 = ω − k2v2,0; A12 = −σ0k1; A13 = −σ0k2,

A21 = γk1 +
1

σ0
η′k2D1v2,0,

A22 = ω − k2v2,0 + i
η0
σ0

[
(2− α)k21 + k22

]
,

A23 = i
η0
σ0

(1− α)k1k2 − 2i‖Ω‖,

A31 = γk2 + i
η0
σ2
0

D2
1v2,0 +

1

σ0
η′(k1D1v2,0 − iD2

1v2,0),

A32 = iD1v2,0 + i
η0
σ0

(1− α)k1k2 + 2i‖Ω‖,

A33 = ω − k2v2,0 + i
η0
σ0

[
(2− α)k22 + k21

]
.

(21)

A nontrivial solution of eq. (20) requires that

(22) detA = εijkA1iA2jA3k = 0.

This equation is the dispersion relation; it relates the spatial and temporal properties
of waves, through k and ω, respectively.


